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Abstract. Analytical expressions for chemical, jump, and tracer diffusion coefficients are obtained for inter-
acting lattice gases on a square lattice. Strongly repulsive nearest neighbor interactions cause the formation
of a highly-ordered c(2× 2) state in the vicinity of half coverage. It is shown that only strongly correlated
successive adatom jumps contribute to the particle flow. This allows to describe the adatom kinetics by
considering an almost ideal lattice gas of defects. Two types of defects are considered, adatoms in the
empty sublattice and vacancies in the filled sublattice of the c(2×2) ordered state. The diffusion equations
for these defects are developed considering the generation and recombination of defects. In addition we
have considered adatom transport caused by the motion of defect pairs (dimers). Dimer transport mech-
anism prevails in the high coverage region. The characteristic features of the various diffusion coefficients
near half coverage are analyzed and discussed. The theory is compared with the results of sophisticated
Monte-Carlo simulations which have been executed with the use of a fully parallelized algorithm on a Cray
T3E (LC784-128). The agreement between theoretical and MC results is excellent if the motion of dimers
at θ > 0.5 is taken into account.

PACS. 82.20.Mj Nonequilibrium kinetics – 68.35.Fx Diffusion; interface formation –
64.60.Cn Order-disorder transformations; statistical mechanics of model systems

1 Introduction

The chemical diffusion coefficient Dc of a non-interacting
lattice gas is independent of coverage in the absence of
adatom-adatom interaction. It is well-known that repul-
sive adatom-adatom interactions result in an increase of
Dc. Even in the absence of macroscopic concentration gra-
dients local (i.e. microscopic) coverage inhomogeneities
might exist, which induce local forces causing the relax-
ation to the uniform state. These local forces can be seen
to some respect as an thermodynamic force ∂µ/∂r (here
µ is the chemical potential of the adatom system) which
causes local adatom flows like an external field.

This idea has been confirmed by analytic calculations
(see e.g. [1]) and Monte-Carlo (MC) simulation [2]. Pro-
gresses in the theoretical description of low-dimensional
systems made it possible to calculate diffusion coefficients
for a one-dimensional chain with nearest neighbor (NN)
interactions [3] and to study the adatom migration in the
vicinity of the order-disorder phase transition [4–6]. The
main result of [4,5] is that the coverage dependence of
diffusion is non-monotonous in narrow regions near the
order-disorder phase transition points and for half cover-
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age. This remarkable result was confirmed using the real
space renormalization group (RSRG) approach [6,7].

Extensive MC simulations [8] using powerful computer
algorithms have revealed the most obvious peculiarities
of the adatom diffusion for the simplest two-dimensional
systems (square lattice, NN interactions). At finite sur-
face coverages tracer (D∗) and jump diffusion coefficient
(Dj) behave remarkably different compared to the chem-
ical diffusion coefficient (see [1,8] for definitions of these
quantities). For the non-interacting case Dj and Dc are
simply related via [9]

Dc =
Dj

1− 〈n〉
· (1)

Here 〈n〉 ≡ θ is the mean value of the lattice site occupa-
tion number, which corresponds to the surface coverage θ.
In the presence of adatom-adatom interactions this simple
relationship is no longer valid.

Long-range correlations constitute the main difficulty
in the analytical investigation of lattice gas properties.
The correlation length (i) increases as a lattice gas system
approaches an order-disorder phase transition, and (ii) di-
minishes both in the well-ordered and disordered states.
Nevertheless, there is an essential difference in the descrip-
tion of adatom migration in ordered and disordered states.
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The transition of the system into an ordered state low-
ers its symmetry. In order to describe an adatom system,
one needs to know, along with the coverage, at least one
more physical quantity (for example, the order parame-
ter). Therefore, the adatom migration in general depends
on the dynamics of several physical quantities.

In this work we study the adatom migration on a
square lattice taking strongly repulsive NN interactions
ϕ� 1 into account. Here ϕ represents the NN interaction
energy in units of kT . At temperatures below Tc [10] these
interactions cause c(2×2) ordering of the adatoms. We will
restrict the considerations to a small range of coverages
θ ≈ 0.5 at temperatures T < Tc. Sharply at half coverage,
θ = 0.5, the lattice gas shows the most ordered c(2 × 2)
structure with a very short correlation length. Under such
circumstances the lattice is divided into two sublattices
of filled and empty sites. At finite temperatures below Tc

there are defects in both sublattices (occupied sites in the
empty sublattice, which in the following will be denoted
black defects, and vacancies in the filled sublattice, white
defects). If the density of these defects is very small, i.e.
for |θ− 0.5| ≡ |δ| → 0 and ϕ� 1, it should be possible to
treat them as an ideal gas. Random adatom jumps may
cause the annihilation of different defects (recombination)
and the thermal generation of defect pairs as well. The
equilibrium concentration of defects can be obtained both
from the generation-recombination (GR) balance condi-
tion and in terms of thermodynamic considerations. The
main idea of the paper is to describe the adatom migration
by considering the motion of the two different defects in
the approximation of an (almost) ideal lattice gas scheme.

Based on this approach (Sect. 2) we will calculate dif-
fusion coefficients (Sects. 3–5) and compare them with the
results of sophisticated Monte-Carlo simulations (Sect. 6)
which are executed using a fully parallelized algorithm on
the Cray T3E (LC672-128) operated by the Max-Planck
community in Garching/Germany. Details of the Monte-
Carlo procedure are given in [11] and will be briefly de-
scribed in Section 6.

2 Thermodynamics of defects

In thermodynamic equilibrium the adatom system is de-
scribed by the statistical operator ρ,

ρ = Q−1 exp

∑
i

µni − ϕ
∑
(i,j)

ninj

 . (2)

Here the first sum runs over all lattice sites i, while the
second one runs over all pairs of NN sites (i, j). ni,j de-
scribes the local occupancy number,

ni =

{
1, if site i is occupied
0, if site i is vacant.

(3)

The partition function Q is given by

Q =
∑
{ni}

exp
[∑

µni − ϕ
∑

ninj

]
. (4)
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Fig. 1. Square lattice of adsorption sites. At low temperatures
the lattice can be divided into two interpenetrating sublattices
of empty (black circles) and filled sites (open circles). Empty
sites of the filled sublattice form white defects, while filled sites
of the empty sublattice form black defects.

At low temperatures the lattice can be divided into
two interpenetrating sublattices of empty and filled sites
in such a way that the NN sites of a given filled site be-
long to the empty sublattice, and vice versa (Fig. 1). The
summation over the variables of a given sublattice can be
carried out explicitly. In the following we will describe this
procedure for the empty sublattice:

Q =
∏
i

∑
{ni}

∑
{nj}

exp

ni
µ− ϕ∑

j

nj

+
µ

4

∑
j

nj


≡
∏
i

∑
{nj}

exp

µ
4

∑
j

nj

[1 + exp
(
µ− ϕ

∑
nj

)]
.

(5)

Here the index j runs over the NN sites of a given site
i. The most probable values of

∑
j nj are 4 and 3 (the

probability that two or more defects are present as near-
est neighbors of site i is negligibly small when ϕ� 1 and
|θ − 0.5| → 0), as already mentioned. Under this assump-
tion the last term of equation (5) can be transformed as

1 + exp
(
µ− ϕ

∑
nj

)
= C exp

(∑ µ′ − µ

4
nj

)
. (6)

The two constants C and µ′ can be written as

C =
(
1 + eµ−3ϕ

)4 (
1 + eµ−4ϕ

)−3

eµ
′

= eµ
(
1 + eµ−4ϕ

)
C

· (7)

With equations (5, 6) the partition function can be writ-
ten as

Q =
[
C
(

1 + eµ
′)]N/2

. (8)
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Here N is the total number of lattice sites. The chemical
potential µ and the surface coverage θ are related by the
thermodynamic equation θ = (∂ lnQ/∂µ)/N . In the lim-
iting case eµ−3ϕ � 1, the following explicit formula can
be given,

eµ−4ϕ ∼= δ +
(
δ2 + e−4ϕ

)1/2
. (9)

This equation can also be obtained in a similar way for
the other sublattice (with i sites belonging to the filled
sublattice). However, the criterion eµ−3ϕ � 1 must be
replaced by eµ−ϕ � 1. It is interesting to note that the
condition eµ−ϕ � 1 implies that −δeϕ � 1 for δ < 0. The
condition eµ−3ϕ � 1 means that δeϕ � 1 for δ > 0.

It follows from equation (9) that the chemical poten-
tial is equal to 2ϕ at half coverage, i.e. for δ = 0. This
statement can be proved independently by considering the
symmetry of the system as the variables ni are replaced
by (1− ni) (particle-hole symmetry).

It is straightforward to show that eµ−4ϕ ≡ nb is equal
to the mean value of |ninj | (where i and j denote NN
sites). |ninj | is the probability to find an adatom in the
empty lattice (see Fig. 1, the black defect at site 0). e−µ ≡
nw is the probability to find a vacancy in the filled lattice
(see Fig. 1, the white defect at site c). It follows from
equation (9) that nw < nb if θ > 0.5, and nw > nb if
θ < 0.5. The product of the probabilities nb and nw does
not depend on θ,

nbnw = e−4ϕ = const. (10)

This relation is very important for the understanding of
peculiar features of the adatom transport. It shows that
the minimum total number of mass carriers (nb +nw)N/2
is present at θ = 0.5. In the following sections we shall see
that both tracer and jump diffusion coefficients show deep
minima close to half coverage.

The dependence µ(θ) is very steep, i.e. one can consid-
erably change the value of µ by slight changes of θ. The
derivative ∂µ/∂θ = (δ2 +e−4ϕ)−1/2 has a sharp maximum
for δ = 0. We shall see in the following sections that the
competition of the thermodynamic factor (θ∂µ/∂θ) and
the mass carrier concentrations (nb and nw) determines
the behavior of the chemical diffusion coefficient in the
vicinity of θ = 0.5.

3 Migration of defects: jump and tracer
diffusion coefficients

In this section we will describe the motion of defects.
Our considerations are based on the rate equation for the
adatom motion

ni(t+∆t)− ni(t)

∆t
=
∑
k

[νkink(1− ni)− νikni(1− nk)]

(11)

in the limit ∆t → 0. Equation (11) describes changes of
the local occupation numbers ni due to adatom jumps to

empty (or from filled) NN sites (index k). The probability
of an adatom jump νki depends on the interaction with
adatoms on NN sites. As in previous work [8] we assume

νkl = ν◦ exp [εk] (12)

where ν◦ = const. εk is the total interaction energy of
the moving adatom on its initial site k and its nearest
neighbors.

Our purpose is to study the black defect migration
in terms of equations (11, 12) only. Figure 1 shows that
the black defect at site 0 can move to an adjacent vacant
site of the empty sublattice by means of two successive
adatom jumps. In order to move the black defect from
site 0 to site 6 it is necessary (i) that the adatom on site 3
jumps to site 6 and (ii) that the adatom on site 0 jumps
to site 3. In principle it is also possible that the adatom
on site 6 jumps back to site 3 in step ii (backward jump).
It follows from equation (12) that the probability of the
first jump (3 → 6) is equal to ν◦e

ϕ. The probability of
the second jump (0→ 3) (and also of the backward jump
6 → 3) is equal to ν◦e

3ϕ. This value is by the factor e2ϕ

greater than that of the first jump (3 → 6). Hence, the
total probability of the defect transition for a short time
interval ∆t is determined by the probability of the first
adatom jump only. With ∆t chosen in the interval

ν◦e
ϕ � ∆t−1 � ν◦e

3ϕ (13)

the probability of the defect jump (0 → 6) in time ∆t is
equal to

∆t
1

2
ν◦e

ϕ ≡ ∆tγϕ. (14)

Here γϕ denotes the jump frequency of black defects.
Thus, the defect transition from site 0 to site 6 may be
regarded as a single jump in the time scale determined by
equation (13). This jump event consists of two strongly
correlated successive adatom jumps, where the second
jump immediately follows the first one. The probability of
the 0 → 6 transition can be obtained more rigorously by
integrating the kinetic equation (Eq. (11)) over the time
interval defined by equation (13). The initial conditions
for the variables ni must be taken in accordance with the
configuration depicted in Figure 1.

The above consideration yields the jump frequency of
black defects to the next nearest site (NNN) of the empty
sublattice to be equal to γϕ. The jumps of black defect to
NN sites of the same sublattice (for example, 0→ 5) occur
with probabilities by the factor of two higher because there
are two symmetric passes (0 → 2 → 5 and 0 → 3 → 5)
which contribute to the total probability. The free motion
of black defects is governed by the rate equation similar
to equation (11), i.e.

nb
i (t+∆t)− nb

i (t)

∆t
= 2γϕ

∑
NN

{
nb
k − n

b
i

}
+ γϕ

∑
NNN

{
nb
k − n

b
i

}
(15)
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where the sums run over NN and NNN of site i. Equa-
tion (15) which describes the uncorrelated jumps of black
defects is linear with respect to nb

i .
The rate equation for white defects can be obtained in

a very similar way. The resulting rate equation

nw
i (t+∆t)− nw

i (t)

∆t
= 2γ

∑
NN

{nw
k − n

w
i }

+ γ
∑
NNN

{nw
k − n

w
i } (16)

reproduces the form of equation (15) but contains the
jump probability γ, which is determined by

γ ≡
1

2
ν◦ � γϕ. (17)

Figure 1 allows to explain this difference. It is evident that
the jump of a white defect from site c to site a is performed
by means of two successive adatom jumps, a → b and
b → c. The first jump is not activated in contrast to the
case of black defect motion.

It is straightforward to extend the theory to the case of
adatom motion in a weak uniform field E with the adatom-
field interaction term being defined as HE = −E

∑
i ri.

Here ri is the position of the ith adatom. The barrier
heights are lowered by the value Ea/2 for the adatom
motion in the direction of the field and are increased by
the same value for the opposite jumps. In the presence of
a field the probabilities of defect jumps are also changed
with regard for the adatom ones. A simple analysis shows
that the changes of the jump probabilities are given by

γϕ →

γϕ(1 +Ea), for 0→ 6,
γϕ(1 +Ea/4), for 0→ 3→ 5,
γϕ(1 + 3Ea/4), for 0→ 2→ 5.

(18)

Here we assume that E lies in the x direction (i.e. along
0→ 6 in Fig. 1). The other probabilities are easily deter-
mined by a symmetry analysis. Employing the modified
defect jump probabilities, we obtain the contribution of
the black defect motion for the adatom flow density,

jb = 4γϕn
bE. (19)

The white defect motion gives a similar contribution.
Thus, the total density of the adatom flow is given by

j = 4(γϕn
b + γnw)E. (20)

The effective conductivity σ = 4(γϕn
b + γnw) of the

adatom system can be expressed as product of the adatom
concentration

c = (θ/a2) ≈ 1/(2a2) (21)

and the mobility b, i.e. σ = bc. Thus, the adatom mobil-
ity (which by definition corresponds to the jump diffusion
coefficient Dj) is given by

b ≡ Dj = 8a2(γϕn
b + γnw) ≡ 4D◦(e

ϕnb + nw). (22)

Here D◦ = ν◦a
2 is the chemical diffusion coefficient of

adatoms in the absence of adatom-adatom interactions.
It is possible to interpret the quantities 4D◦e

ϕ and 4D◦
as mobilities (or jump diffusion coefficients) of black and
white defects, respectively. It follows from equation (22)
that Dj depends on the numbers of black and white de-
fects. One has to expect that Dj is small in the coverage
range where the numbers of mass carriers are small (i.e.
in the vicinity of half coverage, see Sect. 2). The minimum
of Dj must occur slightly below θ = 0.5 due to factor eϕ

within the brackets of equation (22). With equation (9)
we obtain the explicit form of Dj as

Dj = 4D◦
[
(eϕ − 1)δ + (eϕ + 1)

√
δ2 + e−4ϕ

]
(23)

In Section 5 we give a more detailed analysis of the de-
pendencies of Dj on θ and ϕ.

A similar procedure can be employed in order to obtain
the tracer diffusion coefficient. Let us consider an adatom
system that is a mixture of ordinary and tagged parti-
cles (tracers). The tracer concentration c∗ is negligibly
small, and the tracer interaction parameter is similar to
that of ordinary particles. Thus, there is no space-time
correlation of different tagged particles. The tracer dif-
fusion coefficient D∗ describes the motion of individual
particles (single particle diffusion coefficient) in contrast
to the chemical and jump diffusion coefficients (many par-
ticle diffusion coefficients). In order to calculate the tracer
diffusion coefficient we shall first obtain the tracer con-
ductivity σ∗.

The flow of tracers in an external field is also associ-
ated with defect motion. However, only jumps of tagged
particles contribute. For the situation depicted in Figure 1
the following jumps contribute to the tracer flow in +x di-
rection: (i) 0 → 2 → 5 if site 2 is occupied by a tracer;
(ii) 0 → 3 → 5 if site 0 is occupied by a tracer; and (iii)
0 → 3 → 6 if the sites 0 or 3 are occupied by tracers.
The case (iii) requires some comments. The probability of
both jumping adatoms (on sites 0 and 3) to be tagged is
negligible. Thus, the contribution of black defect jumps to
NNN sites to the mobility of tracers is half compared to
the mobility of ordinary particles. Straightforward calcu-
lations similar to those used to obtain equation (20) yield
the tracer conductivity, which is given by

σ∗ = 4D◦

(
3

4
eϕnb + nw

)
c∗. (24)

As previously, the coefficient in front of c∗ in equation (24)
means tracer mobility which for the case of small tracer
concentration is tracer diffusion coefficient D∗ too. The
last statement can be easily proved by straightforward cal-
culations of the value of the tracer flow caused by small
gradient of c∗. Hence, the tracer diffusion coefficient has
the form

D∗ = 4D◦

(
3

4
eϕnb + nw

)
. (25)

The first and the second term in the brackets of
equation (25) are associated with the motion of black and



A.A. Chumak and C. Uebing: Adatom diffusion in two-dimensional highly ordered states 327

white defects, respectively. One can easily see the broken
symmetry in the contribution of black and white defects to
D∗ (factor 3/4). This factor accounts for the difference be-
tween D∗ and the jump diffusion coefficient Dj of ordinary
adatoms (see Eq. (22)). In order to explain this peculiarity
we recall that there is a certain difference in the transport
of black and white defects. The transport of a black defect
to a NNN site involves the jump of only one tagged particle
over a distance a. In contrast, the transport of a white de-
fect may involve the displacement of a tagged particle over
a distance 2a (in case of a→ b→ c, Fig. 1). The physical
reason of this phenomena is that the transport of white
defects requires two successive jumps of the same adatom,
while the transport of black defects requires jumps of two
different adatoms. It is important to note that there is
no such asymmetry with respect to the transport of ordi-
nary particles. In this case, the transport of a black defect
to a NNN site displaces two particles to the distance a.
This situation is fully equivalent to the displacement of
one particle to the distance 2a which occurs during the
transport of a white defect.

It should be noted here that the concept of defect mi-
gration was employed in [12,13] to explain the peculiari-
ties of lattice-gas diffusion which have been revealed under
MC simulation in the vicinity of stoichiometric concentra-
tions. Kutner, Binder and Kehr (see [12]) studied diffusion
in face-centered-cubic lattice gas with repulsive NN inter-
action but with particle jump mechanism different from
ours (determined by Eq. (12)). The explicit term respon-
sible for vacancy jump probability was found in [12]. Sim-
ilarly to our case, it was considered the two-step jump
mechanism with the first step being rate-limiting in low-
temperature range. The vacancy jump probability was
found to be two times higher than the probability of the
first step or equal to it (see in [12] Eqs. (6, 7) respec-
tively). It contradicts with equation (17) of the present
paper which shows that on the average only half of the
first-step successful events results in the vacancy transi-
tions. Nevertheless, both approaches give similar qualita-
tive description of the vacancy jump.

4 Chemical diffusion coefficient

The linear equation (15) can be used to find the chemical
diffusion coefficient of black defects, Db. If we assume that
the black defect concentration nb smoothly varies in space
one can expand the quantities in the right-hand part of
equation (15) in a series of small jump distances aj :

nb(ri)− n
b(rj) = nb(ri)− n

b(ri + aj). (26)

Figure 1 shows that |aj | =
√

2a for jumps to NN sites (or
|aj | = 2a for jumps to NNN sites). Thus, the diffusion co-
efficient of black defects is equal to Db = 4D◦e

ϕ. A similar
procedure gives the diffusion coefficient of white defects to
be equal to Dw = 4D◦. It is interesting to note that Db

and Dw reproduce the mobilities (or jump diffusion coef-
ficients) of black and white defects obtained in Section 3.

The diffusion equations for both species are given by

∂nb

∂t
(r, t) = Db∆nb(r, t),

∂nw

∂t
(r, t) = Dw∆nw(r, t). (27)

Equation (27) describes the evolution of an ideal gas of
defects which depends on the initial and boundary condi-
tions. On the other hand, to describe the evolution of long-
scale inhomogeneities with the characteristic length of the
order of or greater than the mean interdefect distance one
has to account for generation-recombination (GR) pro-
cesses as already discussed in Section 1. For this pur-
pose, we have to add GR terms in the right-hand parts of
equation (27).

The recombination term R has the form R =
−
∑
j Γijn

b
i n

w
j , where Γij is of the order of γϕ and |ri −

rj | = 3a,
√

5a. To comprehend the microscopic recombi-
nation mechanism, we have to consider the situation de-
picted in Figure 1, where the black and white defects in
the sites 0 and c can recombine with probability 2γϕ (for
unit time). It is just the probability of an adatom to jump
from site 1 to site d. A relatively insignificant time is taken
then for completing the recombination act by means of
the adatom jumps (0 → 1 and d → c). The exact values
of Γij can be easily obtained in a similar fashion to γϕ
(see Sect. 3), but their explicit form is irrelevant for the
following analysis.

The generation term can be obtained by analogy with
γϕ. To create one pair (black and white defects), three
successive adatom jumps have to be undertaken. De-
tailed description of generation mechanism is given in
Appendix A.

Introducing both G and R terms in the right-hand
parts of equation (27) yields a system of interconnected
equations

∂nb

∂t
(r, t) = Db∆nb(r, t) +G−R,

∂nw

∂t
(r, t) = Dw∆nw(r, t) +G−R. (28)

In the equilibrium state the derivatives in equation (28)
are equal to zero, and both equations reduce to the evident
condition G = R which determines the product of the
mean defect concentrations

nbnw =
G

Γ
= const exp(−4ϕ), (29)

where Γ =
∑
j Γij = 28ν◦e

ϕ, and G = 28ν◦e
−3ϕ (see

Appendix A), const = 1. We have already derived this
relation in Section 2 (see Eq. (10)) on pure thermodynamic
grounds.

If the defect concentrations slightly differ from their
equilibrium values (nb

i − nb ≡ δnb
i � nb, nw

i − nw ≡
δnw

i � nw) then one can linearize the GR term with re-
spect to δnb and δnw:

G−R ≈ Γ (δnb
i n

w + δnw
i n

b). (30)
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Equation (30) can be used to transform equation (28) to
a system of linear equations which describe the effect of
(i) diffusion and (ii) GR processes on the evolution of cou-
pled disturbances δnb

i and δnw
i . Once δnb and δnw are

known, we can easily obtain the adatom density distur-
bance δc = (δnb − δnw)/(2a2).

It is important to distinguish two different regimes of
the coverage inhomogeneity relaxation, i.e.,

(i) Db,wl−2 � Γnb,w,

(ii) Db,wl−2 � Γnb,w, (31)

where l is the characteristic inhomogeneity length. Case
(i) describes diffusive flows of both species when the influ-
ence of the GR processes is negligible. The diffusional de-
cay of coverage inhomogeneities includes two stages. The
first one is due to fast diffusion of black defects, and the
second one is due to the (slow) diffusion of white defects.
The rigorous description of the coverage evolution for this
case is possible only if the initial profiles and boundary
conditions for black and white defects are known. This
observation is very important to design reliable computer
simulations, especially when the number of lattice sites
is not too high. One can see that the Boltzmann-Matano
scheme is not appropriate for obtaining the adatom diffu-
sion coefficient in this particular case since two different
diffusion coefficients are involved in the adatom transport.

Case (ii) describes also a two-stage evolution process.
After the first (fast) stage, the local equilibrium is es-
tablished with δnbnw = −δnwnb. This means that the
quantities δnb,w are determined by the disturbance of
the chemical potential only. The last statement can be
proved with the use of the explicit forms of nb and nw

(see Sect. 2). Considering the local equilibrium condition
and equation (28), we derive the following diffusion equa-
tion for adatom migration,

∂c

∂t
(r, t) = Dc∆c(r, t), (32)

where Dc is the chemical diffusion coefficient determined
by Dc = (Dbnb + Dwnw)/(nb + nw). Using equation (9)
and the relations nb = exp(µ−4ϕ) and nw = exp(−µ) we
find that

nb + nw = 2
√
δ2 + e−4ϕ = (∂µ/∂ ln θ)−1 (33)

and Dc = (∂µ/∂ ln θ)(Dbnb + Dwnw) = (∂µ/∂ ln θ)Dj,
where Dj is just the jump diffusion coefficient obtained in
Section 3 for the adatom transport in an external field E
(see Eq. (22)). With regard for equation (9) the explicit
form of Dc is given by

Dc = 2D◦
[
1 + eϕ + (eϕ − 1)δ(δ2 + e−4ϕ)−1/2

]
. (34)

The diffusion coefficient Dc = (∂µ/∂ ln θ)Dj describes
the local equilibrium regime of adatom diffusion. Our ap-
proach deals with the kinetics of black and white de-
fects only. However, it is the generation-recombination
processes which establishes the local equilibrium state in

the defect system. Therefore, it is possible to conclude
that Dc describes the GR-controlled stage of the decay of
coverage inhomogeneities. The local value of the chemical
potential is the only physical quantity that determines the
smoothly in space and time varying defect concentrations
at this stage.

In conclusion of this Section, it should be noted that
the explicit form of Dc (see Eq. (34)) can be obtained
employing a thermodynamic term (see Eq. (9) and the
last paragraph of Sect. 2) and a mobility term (Eq. (22)).
However, our analysis gives the possibility to describe
adatom migration beyond the local equilibrium state (us-
ing Eq. (28)) and to find the explicit criteria of the local
equilibrium regime of diffusion (see Eq. (31), case (ii)).

5 The dimer motion effect on the diffusion
coefficients

In the preceding Section 3, the jump diffusion coefficients
were derived as linear forms of the defect concentrations
nb and nw. The reason for this procedure was our assump-
tion that δ is the small parameter of the theory. In this
case, the total number of defects nb + nw is limited by
the greater of the numbers 2|δ| and 2e−2ϕ, and is minimal
when δ = 0. On the other hand, the contribution of black
defects is determined by the factor nbeϕ. In contrast to
nb, this factor can be much larger than one, i.e. nbeϕ � 1
for δ 6= 0 and ϕ � 1. Thus quadratic elements in nbeϕ

terms could give the dominant contribution in Dj, D
∗ and

Dc. Let us consider the situation that two black defects
forming a NN dimer are placed in the neighboring sites (0
and 5) of the empty sublattice (see Fig. 1). The probabil-
ities of adatom jumps from sites 2 or 3 are by the factor
eϕ higher than in the case of an isolated defect. This first
adatom jump is immediately followed by a second jump.
After this series of jump events the NN dimer is trans-
formed either into a similar NN or into a NNN dimer.
Very similar conclusions can be given if we consider the
situation that two black defects are placed in NNN sites
(e.g. sites 0 and 6) of the empty sublattice. Therefore, we
can regard the black dimers as long-living objects (on the
time scale (ν◦e

2ϕ)−1), which perform many jumps before
disintegration. This physical picture is in accordance with
our theoretical analysis in [14] where the effective attrac-
tion of NN and NNN black defects was found.

In the following we shall investigate the contribution
of pairs of black defects (black dimers) on the adatom
transport. We will start with the calculation of the total
number of dimers, Nb

d , which is given by

Nb
d ≡ N

b
NN +Nb

NNN = 2N(nb)2 = nb8nbN

2

1

2
· (35)

Here Nb
NN and Nb

NNN are the average numbers of dimers
formed by NN and NNN black defects, respectively. In
order to illustrate equation (35) we note that the total
number of dimers depends (1) on the probability to find an
isolated defect in each site of the sublattice (nb), (2) the
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average number of NN and NNN defects for such an iso-
lated defect (8nb) and (3) the total number of sublattice
sites (N/2). The factor 1/2 avoids the double counting of
dimers. The relative contribution of black dimers to the
black defect transport is of the order of nbeϕ.

Detailed calculations (see Appendix B) show that the
increase of jump diffusion coefficient due to black dimer
motion is determined by

∆Dj =
16

3
D◦e

2ϕ(nb)2. (36)

Comparing equation (36) with equation (22) shows that
∆Dj constitutes the dominant contribution in the Dj when
θ−0.5 ≥ (3/8)e−ϕ. The effect of black dimers is negligible
for coverages θ < 0.5.

In principle, also white dimers (i.e. dimers formed
by NN or NNN white defects) should be considered.
Quadratic terms in nw are much less significant compared
to quadratic terms in nbeϕ (by a factor of e2ϕ). The con-
tribution of white dimer motion can be obtained formally
from equation (36) by substitution of 1 for e2ϕ, and nw

for nb. At the same time, we must take into account the
effective decrease of the number of isolated white defects.
Detailed analysis shows the negative contribution of white
dimer configurations in jump diffusion coefficient. It is de-
termined by

∆Dj = −
20

3
D◦(n

w)2. (37)

White dimers reduce adatom mobility, in contrast to black
dimers. However, as already mentioned their influence
could be small.

For the sake of simplicity, the theoretical results for
the adatom mobilities were derived so far from conductiv-
ity terms in which the quantity 1/2a2 was substituted for
the exact value of the adatom density c = θ/a2 (Eq. (21)).
Thus, we have to multiply the theoretical results for the
adatom mobilities by the factor of (2θ)−1, and the defini-
tive expression for the jump diffusion coefficient is

Dj =
2

θ
D◦

×

[
eϕnb︸ ︷︷ ︸

black defects

+ nw︸︷︷︸
white defects

+
4

3
e2ϕ(nb)2︸ ︷︷ ︸

black dimers

−
5

3
(nw)2︸ ︷︷ ︸

white dimers

]
.

(38)

The dimer contribution in the tracer diffusion coefficient
can be determined in a quite similar fashion by using the
jump probabilities in an external field. Omitting the de-
tails of the calculations, we present the definitive form of
D∗ as follows

D∗ =
2

θ
D◦

×

[
3

4
eϕnb︸ ︷︷ ︸

black defects

+ nw︸︷︷︸
white defects

+ e2ϕ(nb)2︸ ︷︷ ︸
black dimers

−
5

3
(nw)2︸ ︷︷ ︸

white dimers

]
.

(39)

Comparison of equations (38, 39) shows that the influence
of black dimers on D∗ is by the factor of 3/4 lower com-
pared to Dj. The reason for the asymmetry of black and
white defects contribution in D∗ and Dj was explained in
Section 3: only one tagged particle can be displaced to the
distance a during the single defect jump.

6 Comparison of theoretical results
and Monte-Carlo simulations

In the previous sections we have obtained various diffusion
coefficients considering a linear response of the system to
an external field or concentration gradient. The obtained
kinetic coefficients describe dissipative processes and are
related to the corresponding equilibrium time correlation
functions via the fluctuation-dissipation theorem. In par-
ticular, the conductivity of the system σ can be expressed
in terms of a current-current correlator according to

σ = bc =
1

4Na2

∫ +∞

−∞
dt〈vi (t) vk (0)〉. (40)

Here vi is the velocity of the ith adatom. The correlator in
the right side of equation (40) can be rewritten in terms of
mean square displacements. It follows from equation (40)
that

b = Dj = lim
t→∞

1

4tNa

〈[∑
i

∆ri (t)
]2〉

. (41)

Here ∆ri (t) is the displacement of the ith adatom at time
t, Na is the total number of adatoms.

The expression for tracer mobility (tracer diffusion co-
efficient) can be easily obtained from equation (41) in a
rather formal way by substituting the total number of
tracers N∗ for Na and neglecting the correlation of dif-
ferent tagged particles (rarefied gas of tracers). Thus, in
accordance with [1] we can write

D∗ = lim
t→∞

1

4tN∗

∑
i

〈[∆ri (t)]
2〉. (42)

In the state of local equilibrium, the chemical diffusion
coefficient Dc can be expressed via Dj and the thermody-
namic factor as [15]

Dc =

(
∂µ

∂ ln θ

)
T

Dj =

[
〈(δN)2〉

〈N〉

]−1

Dj. (43)

Here 〈(δN)
2〉 is the mean square number fluctuation in an

area A containing on average 〈N〉 particles.
Our Monte-Carlo simulation of tracer and jump dif-

fusion coefficients employs just the expressions (41, 42).
These quantities are determined from the measurements
of both mean-square displacements of N∗ tagged adatoms
(see Eq. (42)), and the center of mass mean-square dis-
placements (see Eq. (41)). We applied a sophisticated
Monte-Carlo algorithm to simulate particle motion in ini-
tially fully equilibrated adsorbate layers (for details see
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Fig. 2. Normalized jump diffusion coefficient, Dj/D◦, vs.
surface coverage θ for two different interaction parameters:
ϕ = 3.53 (i.e. T = 0.5Tc) and ϕ = 1.96 (i.e. T = 0.9Tc). The
symbols denote MC results. The solid lines represent theoreti-
cal results according to equation (22, 23). The dashed lines are
calculated using equation (38). (b) Same as (a), but for the nor-
malized chemical diffusion coefficient, Dc/D◦. The solid lines
represent theoretical results calculated from equations (33, 38).
(c) Same as (a), but for the normalized tracer diffusion coeffi-
cient, D∗/D◦. The lines represent theoretical results according
to equation (39).

e.g. [11]). All calculations were carried out in terms of
Do, the chemical diffusion coefficient for zero interactions
between adsorbates on a homogeneous lattice (Langmuir
gas) [16].

The mean square number fluctuations 〈(δN)2〉 deter-
mining the thermodynamic factor in the expression for
the chemical diffusion coefficient was obtained for a small
probe embedded into the whole lattice (for details see
[8,16]).

Figure 2a shows the coverage dependence of Dj for
two different interaction parameters ϕ. It is clearly obvi-
ous that Dj changes by several orders of magnitude in a
narrow range around half coverage at low temperatures
(T = 0.5Tc), i.e. when well-ordered structures are formed.
In the close vicinity of half coverage Dj exhibits a deep
minimum, which is slightly shifted to coverages θ < 0.5.
This finding is in accordance with our analysis in Section 3
and with the results of [12] where also well pronounced
minima in the vicinity of stoichiometric concentrations
were obtained (see Figs. 9 and 10 of [12]).
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Fig. 3. Temperature dependence of Dj/D◦ for two different
surface coverages θ as indicated on the figure. Temperature is
normalized with respect to Tc. The solid (dashed) lines repre-
sent theoretical results calculated from equations (22, 23, 38).
The symbols denote MC results. (b) Same as (a), but for
Dc/D◦. The lines represent theoretical results calculated from
equations (33, 38). (c) Same as (a), but for D∗/D◦. The lines
represent theoretical results according to equation (39).

Theoretical results obtained according to equa-
tions (22, 23) (solid lines), equation (38) (dashed lines)
and MC results (symbols) exhibit the same qualitative be-
havior over a wide range of coverages supporting our main
concept of the defect mechanism of adatom transport. The
differences between solid and dashed curves emphasize the
influence of dimers. Black dimers substantially increase Dj

at coverages θ > 0.5, while white dimers slightly decrease
Dj at θ < 0.5. The agreement between MC and theory
is not quantitative. The best agreement is established at
coverages above half coverage, when the dimer motion is
taken into account (Eq. (38), dashed lines).

It is probably important to note that the agreement
between MC results and theoretical results is better at
low temperatures. Close to Tc the defect system cannot
be rigorously treated in the frame of a rarefied gas model
which was employed in the previous sections and, there-
fore, the theory can not give a good accuracy here.

The temperature dependence of Dj/D◦ is shown in
Figure 3a for two characteristic surface coverages θ. As al-
ready mentioned the best agreement between theory and
MC simulation is established at coverages θ > 0.5 when
the motion of black dimers is considered (dashed line)
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according to equation (38). At θ < 0.5 the deviations be-
tween theory and MC are more pronounced, but tend to
disappear upon lowering the temperature.

Our results for the chemical diffusion coefficient Dc =
(∂µ/∂ ln θ)Dj are shown in Figure 2b for the same set
of interaction parameters. Here we use Dj determined by
equation (38), and the thermodynamic factor ∂µ/∂ ln θ
determined by equation (33). According to the theory, Dc

is a monotonous function of δ = θ − 0.5, which exhibits
substantial increases around half coverage. The transi-
tion from white (low mobile) to black (high-mobile) defect
transport is responsible for this steep increase.

One can anticipate that relative contributions of dif-
ferent species will be changed with varying the model of
the adatom jumps. In a hypothetical case of equal mobil-
ities of black and white defects, no steep behavior of Dc

will take place in the vicinity of half coverage. Our ideal-
ized model of adatom jumps ignores the very important
effect of adatom-adatom interactions in the saddle point.
The simplest generalization of this model [11] takes into
account the influence of occupied sites in the close vicinity
of the saddle point on the jump probabilities of diffusing
adatoms. In our case, this interaction will reduce the dif-
ference between black and white defect mobilities and the
overall diffusion rates as well.

The theoretical results qualitatively agree with the MC
data. However, the MC data exhibit a striking maximum
of Dc which is clearly visible at T = 0.5Tc and δ = 0,
i.e. when the adatom layer is almost perfectly ordered.
In [11] a similar maximum is explained by a sharp maxi-
mum of the thermodynamic factor. Apart from this point
there are several minor deviations between MC and the-
oretical results: (i) for δ → −0.1 the theoretical results
are significantly lower than the MC results (by a factor
of 4 at T = 0.9Tc), and (ii) for δ → 0.1 the theoretical
results are also lower than the MC results (by a factor
of 2 at T = 0.5Tc). The theory of adatom diffusion which
employs the conception of uncorrelated adatom jumps was
developed by Zhdanov in [17]. With this approach one can
easily obtain the value of chemical diffusion coefficient as

Dc ∼ (δ2 + e−4ϕ)−1/2 (44)

in the vicinity of θ = 0.5. Equation (44) is shown in
Figure 2b as dashed line. It is quite obvious that Zhdanov’s
theory is capable to explain the maximum in the coverage
dependence of Dc at half coverage. However, Zhdanov’s
approach exhibits significant deviations in the description
of Dc at δ > 0.

In Figure 3b the temperature dependence of Dc is
shown for two different surface coverages θ = 0.46 and
θ = 0.54. For θ = 0.54 the agreement between our theory
and MC data is almost quantitative, while for θ = 0.46
there are small deviations which are substantially reduced
as the temperature is lowered (similar to the case of Dj).

Figure 2c illustrates the coverage dependencies of the
tracer diffusion coefficient, which exhibits a deep mini-
mum at low temperatures (i.e. for T = 0.5Tc). This mini-
mum was also obtained in [8] (see Figures 7 and 8 of [8]).
The coverage dependence D∗(θ) resembles that of Dj(θ)
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Fig. 4. Coverage dependence of D∗/Dj for various values of
the interaction parameter: (1) ϕ = 2.52 (T = 0.7Tc), solid line:
theory, (◦): MC data; (2) ϕ = 3.53 (T = 0.5Tc), dashed line:
theory, (+): MC data; (3) ϕ = 4.41 (T = 0.4Tc), dotted line:
theory, (∗): MC data. The theoretical results are calculated
according to equations (38, 39).

(Fig. 2a) and can be discussed in the similar manner as be-
fore. There is at least qualitative agreement between MC
data and theoretical results calculated from equation (39)
for a wide range of coverages 0.4 < θ < 0.6. For θ > 0.5 the
agreement is almost quantitative, especially at low tem-
peratures. The temperature dependence of D∗ shown in
Figure 3c clearly demonstrates the excellent agreement
between theory (Eq. (39)) and MC results for θ = 0.54,
where the motion of black defects and dimers dominate.
For θ = 0.46 the agreement between theory and MC is
good, especially at low temperatures.

It is quite interesting to analyze the behavior of D∗/Dj

(Fig. 4). It clearly shows the changes of the transport
mechanisms in the coverage range 0.4 < θ < 0.6. The flat
parts of the curves represent the transport of white de-
fects which prevails at θ < 0.5. Well below half coverage
MC and theoretical results (calculated from Eqs. (38, 39))
agree almost quantitatively. A steep decrease from 1 to 3/4
in the vicinity of θ = 0.5 is due to the change of the dom-
inating defect (white defects at θ < 0.5, black defects at
θ > 0.5). It should be noted that obtained in [12] nontriv-
ial peculiarities of the relation D∗/Dj were explained in
terms of the different transport mechanisms too.

For θ > 0.5 the theory predicts D∗/Dj to be constant.
However, the MC results do not support this prediction
and exhibit a further decrease of D∗/Dj. It is conceivable
that this finding is due to contributions of more complex
adatom jumps.

It should be noted that the quantity D∗/Dj was ana-
lyzed for the non-interacting case (ϕ = 0) by Nakazato and
Kitahara and was found to be close to 3/4 at θ = 0.5 [18].
In addition, these authors found a linear dependence of
D∗/Dj on θ, in contrast to the present theory. The value
D∗/Dj was shown to be higher for a three-dimensional
lattice. Our derivation of equation (39) also reveals the
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effect of defects jump trajectories. Hence, one can antici-
pate that D∗/Dj differs for surfaces with various symme-
tries.

7 Summary

Chemical, jump and tracer diffusion coefficients of repul-
sively interacting adparticles on a square two-dimensional
lattice strongly depend on coverage in the close vicinity
of half coverage, where a well-ordered c(2 × 2) structure
is formed at low temperatures. In this work we provide a
simple analytical description of an adsorbate system with
strong repulsive interaction just for this highly ordered
state. Equations for the various diffusion coefficients are
obtained explicitly. The comparison of theoretical results
and MC simulation data shows good agreement of both
approaches for a wide range of coverages 0.4 < θ < 0.6
and temperatures, 0.3Tc < T < Tc.

Our theory employs the concept of the defect motion.
It takes into account the adatom jump correlations only in
terms of the jump frequency renormalization. The theory
can be extended to the cases of other lattice symmetries
and greater adatom-adatom interaction radii.

The following points are established.

(i) At an early stage of relaxation, two independent dif-
fusion flows (flows of two defect species) occur with
very different diffusion coefficients. As the charac-
teristic length of inhomogeneities increases, the GR
processes must be considered. The GR-controlled
defect motion produces a locally equilibrium state
of the system. Only the last stage of the relax-
ation is governed by the ordinary diffusion equa-
tion with the chemical diffusion coefficient defined
by Dc = (∂µ/∂ ln θ)Dj. The independent analysis of
defect flows in an external uniform field shows that
the jump diffusion coefficient Dj corresponds to the
adatom mobility.

(ii) The chemical diffusion coefficient Dc is a monotonous
function with very steep behavior near θ = 0.5. This
behavior results from the change of the transport
mechanism (dominance of white defects at θ < 0.5
and black defects at θ > 0.5).

(iii) Dj and D∗ exhibit deep minima in the vicinity of half
coverage. These findings are also attributable to the
change of the transport mechanism.

(iv) We have explained the difference between the jump
and tracer diffusion coefficients appearing for θ > 0.5
where the motion of individual black defects and
black dimers prevail. The explanation is based on
microscopic jump mechanisms of isolated defects and
dimers.
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Appendix A: Rate of defect generation

We will use again Figure 1 to illustrate the characteristic
three successive steps of pair generation. Let us obtain
the probability of pair creation (white defect in site i and
black defect in site l on the originally ordered area of the
lattice for a short time interval.

(i) The first jump from the site i to site j (jump with
the probability ν◦ for unit time).

(ii) The lifetime of the adatom in the site j is of the or-
der of (ν◦e

3ϕ)−1 as there are three nearest neighbors.
During that time, the adatom at site k can jump to
site l with the probability ν◦e

ϕ(ν◦e
3ϕ)−1 = e−2ϕ.

(iii) The lifetime of the adatom in site l is of order of
(ν◦e

3ϕ)−1. During this time, the adatom at site j can
jump to site k with the probability ν◦e

2ϕ(ν◦e
3ϕ)−1 =

e−ϕ. This last jump completes the pair generation.

One can see that the total probability of pair creation
(a black defect at site l and a white defect at site i) for
a short time interval ∆t(ν◦ � ∆t−1 � ν◦e

3ϕ) is equal to
∆tν◦e

−3ϕ. We do not describe in details other possibilities
of pair generation here. Each of these gives a similar con-
tribution (in the order of magnitude) to the total probabil-
ity. A simple geometric analysis gives the total probability
of pair creation (white defect in site i and black defect in
arbitrary site) equal to G = 28ν◦e

−3ϕ. We can see that the
pair generation probability is much lower than the defect
jump probability (by the factor of e−(3or4)ϕ), and this is
the reason which allows to treat the defects as an almost
ideal gas.

Appendix B: Contribution of black dimers
to the total adatom transport

In order to consider the effect of dimers on the jump dif-
fusion coefficient Dj, we employ a technique similar to the
one already used in Section 3. We analyze the defect mo-
tion in an uniform external field E and consider the contri-
bution of differently oriented dimers on the total adatom
flow. For this purpose we have to distinguish the following
situations:

a) the black dimer is formed by NN defects in the sites 0
and 5,
• the probability of the black defect jump 0 → 6 for

a unit time is equal to (1/3)ν◦e
2ϕ(1 +Ea),

• the probability of the black defect jump 5 → 6 is
equal to (1/3)ν◦e

2ϕ(1 +Ea/2),
• the probability of the black defect jump 0 → 7 is

equal to (1/3)ν◦e
2ϕ(1 +Ea/3);

b) the black dimer is formed by NNN defects in the sites
0 and 6,
• the probabilities of 0 → 5 and 0 → 7 jumps are

equal, the value is given by (1/3)ν◦e
2ϕ(1 +Ea/2);

c) the black dimer is formed by NNN defects in the sites
5 and 7,
• the probabilities of 5 → 6 and 7 → 6 jumps are

equal, the value is given by (1/3)ν◦e
2ϕ(1 + 2Ea/3).
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In the case of the 0 → 6 defect jump, two adatoms
are displaced in the positive direction of the field to the
distance a, while in the other cases only one adatom is dis-
placed in this direction. The jump probabilities discussed
above allow to obtain the contribution of black dimers
to the jump diffusion coefficient, ∆Dj, which is given by
equation (36).
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